Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

Identifieur interne : 000835 ( Main/Exploration ); précédent : 000834; suivant : 000836

Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.

Auteurs : Kimberly M. Alonge ; Gordon P. Meares [États-Unis] ; F Bradley Hillgartner [États-Unis]

Source :

RBID : pubmed:28188284

Descripteurs français

English descriptors

Abstract

Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression.

DOI: 10.1074/jbc.M116.762922
PubMed: 28188284
PubMed Central: PMC5392671


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.</title>
<author>
<name sortKey="Alonge, Kimberly M" sort="Alonge, Kimberly M" uniqKey="Alonge K" first="Kimberly M" last="Alonge">Kimberly M. Alonge</name>
<affiliation>
<nlm:affiliation>From the Departments of Biochemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Biochemistry and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Meares, Gordon P" sort="Meares, Gordon P" uniqKey="Meares G" first="Gordon P" last="Meares">Gordon P. Meares</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26506.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hillgartner, F Bradley" sort="Hillgartner, F Bradley" uniqKey="Hillgartner F" first="F Bradley" last="Hillgartner">F Bradley Hillgartner</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Departments of Biochemistry and fbhillgartner@hsc.wvu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:28188284</idno>
<idno type="pmid">28188284</idno>
<idno type="doi">10.1074/jbc.M116.762922</idno>
<idno type="pmc">PMC5392671</idno>
<idno type="wicri:Area/Main/Corpus">000877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000877</idno>
<idno type="wicri:Area/Main/Curation">000877</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000877</idno>
<idno type="wicri:Area/Main/Exploration">000877</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.</title>
<author>
<name sortKey="Alonge, Kimberly M" sort="Alonge, Kimberly M" uniqKey="Alonge K" first="Kimberly M" last="Alonge">Kimberly M. Alonge</name>
<affiliation>
<nlm:affiliation>From the Departments of Biochemistry and.</nlm:affiliation>
<wicri:noCountry code="no comma">From the Departments of Biochemistry and.</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Meares, Gordon P" sort="Meares, Gordon P" uniqKey="Meares G" first="Gordon P" last="Meares">Gordon P. Meares</name>
<affiliation wicri:level="2">
<nlm:affiliation>Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26506.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
<wicri:cityArea>Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Hillgartner, F Bradley" sort="Hillgartner, F Bradley" uniqKey="Hillgartner F" first="F Bradley" last="Hillgartner">F Bradley Hillgartner</name>
<affiliation wicri:level="1">
<nlm:affiliation>From the Departments of Biochemistry and fbhillgartner@hsc.wvu.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of biological chemistry</title>
<idno type="eISSN">1083-351X</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Activating Transcription Factor 4 (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Chenodeoxycholic Acid (pharmacology)</term>
<term>Drug Synergism (MeSH)</term>
<term>Eukaryotic Initiation Factor-2 (pharmacology)</term>
<term>Fibroblast Growth Factors (genetics)</term>
<term>Gene Expression Regulation (drug effects)</term>
<term>Glucagon (pharmacology)</term>
<term>Glucagon (physiology)</term>
<term>Hepatocytes (cytology)</term>
<term>Insulin (physiology)</term>
<term>Rats (MeSH)</term>
<term>Transcription, Genetic (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules cultivées (MeSH)</term>
<term>Chénodiol (pharmacologie)</term>
<term>Facteur de transcription ATF-4 (métabolisme)</term>
<term>Facteur-2 d'initiation eucaryote (pharmacologie)</term>
<term>Facteurs de croissance fibroblastique (génétique)</term>
<term>Glucagon (pharmacologie)</term>
<term>Glucagon (physiologie)</term>
<term>Hépatocytes (cytologie)</term>
<term>Insuline (physiologie)</term>
<term>Rats (MeSH)</term>
<term>Régulation de l'expression des gènes (effets des médicaments et des substances chimiques)</term>
<term>Synergie des médicaments (MeSH)</term>
<term>Transcription génétique (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fibroblast Growth Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Activating Transcription Factor 4</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Chenodeoxycholic Acid</term>
<term>Eukaryotic Initiation Factor-2</term>
<term>Glucagon</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Hépatocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Hepatocytes</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes</term>
<term>Transcription génétique</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de croissance fibroblastique</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteur de transcription ATF-4</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chénodiol</term>
<term>Facteur-2 d'initiation eucaryote</term>
<term>Glucagon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Glucagon</term>
<term>Insuline</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Glucagon</term>
<term>Insulin</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cells, Cultured</term>
<term>Drug Synergism</term>
<term>Rats</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cellules cultivées</term>
<term>Rats</term>
<term>Synergie des médicaments</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28188284</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>06</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1083-351X</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>292</Volume>
<Issue>13</Issue>
<PubDate>
<Year>2017</Year>
<Month>03</Month>
<Day>31</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of biological chemistry</Title>
<ISOAbbreviation>J Biol Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.</ArticleTitle>
<Pagination>
<MedlinePgn>5239-5252</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1074/jbc.M116.762922</ELocationID>
<Abstract>
<AbstractText>Previous studies have shown that glucagon cooperatively interacts with insulin to stimulate hepatic FGF21 gene expression. Here we investigated the mechanism by which glucagon and insulin increased FGF21 gene transcription in primary hepatocyte cultures. Transfection analyses demonstrated that glucagon plus insulin induction of FGF21 transcription was conferred by two activating transcription factor 4 (ATF4) binding sites in the FGF21 gene. Glucagon plus insulin stimulated a 5-fold increase in ATF4 protein abundance, and knockdown of ATF4 expression suppressed the ability of glucagon plus insulin to increase FGF21 expression. In hepatocytes incubated in the presence of insulin, treatment with a PKA-selective agonist mimicked the ability of glucagon to stimulate ATF4 and FGF21 expression. Inhibition of PKA, PI3K, Akt, and mammalian target of rapamycin complex 1 (mTORC1) suppressed the ability of glucagon plus insulin to stimulate ATF4 and FGF21 expression. Additional analyses demonstrated that chenodeoxycholic acid (CDCA) induced a 6-fold increase in ATF4 expression and that knockdown of ATF4 expression suppressed the ability of CDCA to increase FGF21 gene expression. CDCA increased the phosphorylation of eIF2α, and inhibition of eIF2α signaling activity suppressed CDCA regulation of ATF4 and FGF21 expression. These results demonstrate that glucagon plus insulin increases FGF21 transcription by stimulating ATF4 expression and that activation of cAMP/PKA and PI3K/Akt/mTORC1 mediates the effect of glucagon plus insulin on ATF4 expression. These results also demonstrate that CDCA regulation of FGF21 transcription is mediated at least partially by an eIF2α-dependent increase in ATF4 expression.</AbstractText>
<CopyrightInformation>© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Alonge</LastName>
<ForeName>Kimberly M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Biochemistry and.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Meares</LastName>
<ForeName>Gordon P</ForeName>
<Initials>GP</Initials>
<AffiliationInfo>
<Affiliation>Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia 26506.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hillgartner</LastName>
<ForeName>F Bradley</ForeName>
<Initials>FB</Initials>
<AffiliationInfo>
<Affiliation>From the Departments of Biochemistry and fbhillgartner@hsc.wvu.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 HL007028</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>U54 GM104942</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>02</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Biol Chem</MedlineTA>
<NlmUniqueID>2985121R</NlmUniqueID>
<ISSNLinking>0021-9258</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015852">Eukaryotic Initiation Factor-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007328">Insulin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C414620">fibroblast growth factor 21</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0GEI24LG0J</RegistryNumber>
<NameOfSubstance UI="D002635">Chenodeoxycholic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>145891-90-3</RegistryNumber>
<NameOfSubstance UI="D051701">Activating Transcription Factor 4</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>62031-54-3</RegistryNumber>
<NameOfSubstance UI="D005346">Fibroblast Growth Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9007-92-5</RegistryNumber>
<NameOfSubstance UI="D005934">Glucagon</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D051701" MajorTopicYN="N">Activating Transcription Factor 4</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002635" MajorTopicYN="N">Chenodeoxycholic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015852" MajorTopicYN="N">Eukaryotic Initiation Factor-2</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005346" MajorTopicYN="N">Fibroblast Growth Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005934" MajorTopicYN="N">Glucagon</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D022781" MajorTopicYN="N">Hepatocytes</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007328" MajorTopicYN="N">Insulin</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051381" MajorTopicYN="N">Rats</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="N">Transcription, Genetic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">PKA</Keyword>
<Keyword MajorTopicYN="Y">bile acid</Keyword>
<Keyword MajorTopicYN="Y">eIF2</Keyword>
<Keyword MajorTopicYN="Y">glucagon</Keyword>
<Keyword MajorTopicYN="Y">insulin</Keyword>
<Keyword MajorTopicYN="Y">liver</Keyword>
<Keyword MajorTopicYN="Y">mammalian target of rapamycin (mTOR)</Keyword>
<Keyword MajorTopicYN="Y">transcription regulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2017</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>6</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>2</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28188284</ArticleId>
<ArticleId IdType="pii">M116.762922</ArticleId>
<ArticleId IdType="doi">10.1074/jbc.M116.762922</ArticleId>
<ArticleId IdType="pmc">PMC5392671</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Feb;7(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16493415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jul 6;14(1):21-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21723501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Nov 12;582(27):3805-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18948104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2007 Aug 24;360(2):437-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jul 20;287(30):25123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22661717</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1992;54:885-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1562196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2008 May;57(5):1246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18252893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Oct 15;399(2):275-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16834571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2015 Nov;26(11):608-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26490383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gastroenterology. 2010 Aug;139(2):456-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451522</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Oct 2;109(40):16184-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22927400</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 27;285(35):26861-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Endocrinology. 2005 Mar;146(3):1473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Jun;5(6):426-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Nutr. 2005;25:391-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16011472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 06;9:528</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Apr 14;275(15):11348-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10753948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3441-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Apr 1;443(1):165-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22233381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Mar;72(3):1157-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1055372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 16;273(42):27320-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 2016;78:223-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26654352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Protoc. 2009 Dec;2009(12):pdb.prot5330</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20150077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1999 May;19(5):3760-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10207099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2014 Feb;25(2):60-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24231725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Apr 22;280(16):16427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15716276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11269-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15277680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Endocrinol Metab. 2015 Jan;26(1):22-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25476453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Jan 13;287(3):1861-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22144677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 2013 Jul;54(7):1786-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23661803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Feb 26;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25719440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Endocrinol. 2016 Aug;57(2):R93-R108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27194812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Oct 24;289(43):29751-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25170079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Jul;8(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18590693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2013 Oct;1833(10):2165-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23665047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2013 Dec;62(12):4184-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23884887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Apr 14;9(4):e94996</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24733293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Open Biol. 2014 Nov;4(11):140180</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25392452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2014 Dec;19(12 ):864-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25270507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2009 Mar 1;77(5):858-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19073151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Oct 15;306(5695):457-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15486293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1991;201:328-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1658551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2013 Sep 1;454(2):267-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23767959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 21;285(21):15777-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20339002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2008 Aug;14(8):828-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2014 Sep;124(9):3913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25133427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2014 Dec;63(12):4057-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25008183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;159:118-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2842580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Feb 15;26(4):312-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 29;423(6939):550-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2016 Jul 19;16(3):707-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27396336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1987 Apr;162(1):156-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2440339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2007 Jun;5(6):415-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17550777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2005 Dec;42(6):1291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16317705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2002 Nov;4(11):901-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12402047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 1998 Oct;39(10):1951-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9788241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 12;111(32):11592-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25082895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Diab Rep. 2009 Jun;9(3):208-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19490822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Endocrinol. 2010 Dec;6(12):689-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20957001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2006 Feb;34(Pt 1):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2015 May 29;290(22):13972-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25873396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Pharmacol. 1997 May 26;327(1):87-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9185840</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie-Occidentale</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Alonge, Kimberly M" sort="Alonge, Kimberly M" uniqKey="Alonge K" first="Kimberly M" last="Alonge">Kimberly M. Alonge</name>
</noCountry>
<country name="États-Unis">
<region name="Virginie-Occidentale">
<name sortKey="Meares, Gordon P" sort="Meares, Gordon P" uniqKey="Meares G" first="Gordon P" last="Meares">Gordon P. Meares</name>
</region>
<name sortKey="Hillgartner, F Bradley" sort="Hillgartner, F Bradley" uniqKey="Hillgartner F" first="F Bradley" last="Hillgartner">F Bradley Hillgartner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000835 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000835 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28188284
   |texte=   Glucagon and Insulin Cooperatively Stimulate Fibroblast Growth Factor 21 Gene Transcription by Increasing the Expression of Activating Transcription Factor 4.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28188284" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020